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Processing Electrophysiological Signals

for the Monitoring of Alertness

Abstract

This research project is concerned with the use of mathematical

techniques for processing EEG signals associated with varying states of

alertness. It requires the development and implementation of advanced

signal modeling and data processing techniques; especially designed

for the representation and prediction of bioelectric signals useful

as estimators of states of alertness. In particular, our goal is to

develop and implement efficient techniques for processing and modeling

of EEG signals to extract the characteristics of signals associated with

varying states of alertness. New represents±ionq for REG signals

which will enhance the features in estimating the states of alertness

are sought after. Fast algorithms for implementing real-time computations

of alertness estimates have also been developed. In this report, we

present a new realization of the phase-distortionless digital filter

which approaches real-time filtering and a new transform for EEG signals.

This transform not only provides new information for the alertness

estimates but also can be performed in real time. We are also developing

a statistical test for stationarity in EEG signals. This test provides

a method for determining the duration of the EEG signals necessary in

estimating the short-time power or energy spectra for nonstationary

analysis of EEG signals. It also helps in extracting the dynamic

properties of the signal process.
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Processing Electrophysiological Signals

for the Monitoring of Alertness

I. Introduction

The goal of this project is to develop and implement advanced

techniques for processing -and modeling of EEG signals to extract the

characteristics of signals associated with varying states of alertness.

These techniques are especially designed for the representation and pre-

diction of electrophysiological signals useful as estimators of states

of alertness. The purpose of signal representation is to transform

the data into a domain which is more convenient, for some reason, to

the particular user or users or for further analysis; e.g., data reduction

or the enhancement of alertness estimates may be one of these goals.

Fourier series or transform has proven useful in the analysis of

EEG signals in that it enhances the characteristics of the rhythmatic

activities in EEG signals. With the advent of fast-Fourier-transform

algorithm, the use of the Fourier spectral analysis has been widespread.

However, it requires that the signal be at least wide-sense stationary.

Since the EEG signals manifests the subject's brain states, the statistical

characteristics vary as the states of the subject change during the

course of time. It is more natural to treat EEG signals as nonstationary

processes as proposed or as treated in [1] [2]. The general approach is

to use a short-time power or energy spectral analysis. The success of

this approach depends on the signal process remaining stationary during

the duration for which the spectrum is obtained. The quantitative

determination of this duration is important for both the accuracy and

the efficiency of this analysis. We have used a sensitive test which
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will not only determine the time interval of the signal in which

significant change in certain statistical characteristics is unlikely

to occur, but also detect any rapid changes in the interval if these

statistical characteristics do vary. An algorithm to implement this

test on a computer has been developed. In addition, this test will

also detect the transition of the brain states and aid in extracting

the dynamic properties of the process. We shall describe this test

and its implementation and some preliminary results obtained by applying

it to the EEG data furnished by NASA-Ames Research Center.

As proposed, we have also searched for other representations

(transforms) of EEG signals which may furnish advantages over the Fourier

transform. The Fourier spectrum is a signal representation in which

the sinusoidal waveforms are used as basis functions. Different sets

of basis functions will result in different spectra. The search for a

new signal representation (transform) is tantamount to the quest for a

new set of basis functions. In particular, we have used a set of

orthonormalized square waves as basis functions to represent EEG signals.

This set of square waveforms is known as the Walsh functions [3]. The

resultant representation by using this set of square waveforms is thus

called the Walsh transform. The Walsh transform is especially suitable

for digital or digitized signals. The algorithm for Walsh transform is

far faster than the fast-Fourier-transform, and it can be easily imple-

mented by hardwire programming. Real-time computation of the Walsh

spectra is a cinch. From our analysis of the EEG data furnished by

NASA-Ames Research Center, the Walsh spectra enhance certain features

of the EEG signals. We shall describe our analysis of EEG signals by
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the use of Walsh transform and demonstrate its advantages.

In the phase-uncertainty model of EEG signals [4], there is the

characteristic parameter b which is the propagation speed of the

variance used as a measure of the uncertainty of the phase. We believe

that this parameter b will be a good measure for alertness. In order

to obtain a time-varying b from the EEG signals, we have used a

sliding window and an estimator method rather than the correlation

technique. The ultimate goal is to find a scalar relationship between

the time-varying b and behavioral alertness measurements. It is

essential to have a linear-phase filter so that the phase information

in EEG will not be distorted after filtering. The previously used time-

domain transversal filter does serve the purpose; however, it is

extremely slow. We have implemented a frequency-domain linear-phase

filter which operates in real time. The details of this filter will be

described.
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II. A Test for Stationarity in EEG Signals

To treat EEG signals as nonstationary processes,.many researchers

have used the short-time spectral analysis. This technique depends on

the validity of the assumption that the signal remains at least wide-

sense stationary in the interval when the short-time power density

spectrum is being computed. For a process to be wide-sense stationary,

its mean must be a constant and its autocorrelation function must be

a function of the lagging interval alone. We have devised a sensitive

method for detecting any changes of the stationarity conditions in the

signal process for any intervals of time. The approach is to subject

themeanand mean square of the signal process to randomness statistical

tests in order to identify non-random variations of the parameters of

interest in the course of time. This method will not only determine the

epoch within which the signal process remains stationary but also will

detect the transition of the brain states and thus will aid in extracting

the dynamic properties of the process.

The mean, variance, and mean square are calculated for each successive

one-second segment of data. These parameters then form a set of arrays

consisting of from 5 to 25 elements. Each array then is composed of

statistics representing an interval of data from 5 to 25 seconds, all

intervals starting at the same reference as shown below:

1 2 3 4 5

I I i I I I
1 2 3 4 5 6

1 2 3 4 5 6 7

1 2 3 4 5 6 .. 25
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Each of these arrays is then subjected to four tests of nonrandomness,

since each test is sensitive to a different type of trend. The four tests

are:

a) Run test

b) Trend test

c) Mean Square Successive Differences test, and

d) Serial Correlation test.

Each test assigns a parameter value to each array. The parameter values

are then plotted versus interval length, and trends are displayed. If

there is a nonstationary trend, it will manifest itself by a significant

change in one or more of the test parameters. The procedure is block

diagrammed in Figure 1.

calculate Run

rliv rl'-int :z f n.'vfnrn
...EEG --.. Trend I plot
intervals 's + 2s tests onMSSD results

for each I's + 's Ser. Cor.
interval

Figure 1 Block diagram for tests of nonstationarity

As an illustration, we have used the EEG data recorded while the

human subjects with eyes closed were stimulated by stroboscopic flashes

at the rate of 10 flashes per second for 50 seconds, then no stimulation

for 50 seconds, then another 50 seconds of stimulation, etc. The EEG

data were furnished by Dr. J. Anliker of NASA-Ames Research Center.

In this case the Mean Square Successive Differences test was the

most sensitive to the state of strobe--on or off. It showed a change

in test parameter starting shortly after the change in strobe status,

and lasting several seconds. This corresponds to expected latency

5



periods for photically stimulated subjects.

Results

Figures 2 - 8 illustrate the effect of the strobe turning off. At

the point marked T on the horizontal axis (e.g., 25 seconds in Figure

2), the strobe went off. This means (for Figure 2) the strobe was on

for 25 seconds following the reference time. In Figure 3 the reference

time in the EEG data is 6.3 seconds later than in Figure 2, and, therefore,

the T indicating strobe off occurs after 18.7 seconds (25 - 6.3).

In other words, the different figures represent the results of sliding

a 25-second window along the EEG data with 6.3-second increments.

The dependent variable is the result of the Mean Square Successive

Differences test run on the mean (A), variance (cr2) and mean square

( 2) for each interval from 5 to 25 seconds. Thus,. in Figure 3 the first

last seven are combinations of pre- andpost-strobed terminations.

As can be seen, there is no trend before T in all figures (which

is reasonable since all the points represent strobed data). Starting

with Figure 3 a trend can be seen beginning approximately one second

after the cessation of strobing, and continuing for approximately 6

or 7 seconds. This is best seen in Figure 6. Figure 5 is a repeat of

Figure 4 with polynomial regression lines (4th order) fit to the data.

Examining this series of figures we observe that the effect of turning

off the strobe is detected, and the nonstationary interval following this

event is identified.

Figures 7 and 8 show the results of MSSD test for stimulus-off EEG

signals where no trends have been detected.
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III. Representations of EEG Signals

In our search for new representations of EEG signals, we aimed

at the efficiency of the representations and their enhancement of various

desired features of the signal. The Karhunen-Loeve expansion offers

the most efficient representation; however, it suffers from its difficulty

in implementation. Fourier transform has proven to be useful in some

EEG analysis. In the course of our work, we have developed and imple-

mented a statistical representation in terms of amplitude, frequency,

and phase of EEG signals [5] and the representation in terms of in-

phase and quadrature components [6]; we have also looked into the

Karhunen-Loeve expansion as discussed in the previous reports. The

Walsh transform of EEG signals offers potentials not only in its efficiency

of representation but also in its enhancement of certain desirable

features of EEG signals. The Walsh transform is a representation in

terms of a set of Walsh functions which were originally developed by

J. Walsh in 1923 [3] and gained populatiry since 1968 [7]. Preliminary

results showed that the Walsh spectra of EEG in the various sequency

bands gave a better indication of the alertness states.

The representation of a signal x(t) in terms of the set of Walsh

functions is given by

x(t) = Wk wal(k -'- , O t T

k=O0

where k is the number of zero crossings of Walsh functions. Lackey

[8] presenteda good review of the construction of Walsh functions from

products of the incomplete, but simpler set of Radamacher functions.

The Walsh coefficients are obtained by
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Wk T x(t) wal k, ) dtW-T

For a digital (or discrete-time) signal which consists of N

sampled data points, we may represent the elements of the digital signal

by

N-1

x(m) = Wk wal (m,k) , m = 0, 1, 2, ... , N-1

k=0

The Walsh coefficients are then given by

N-1

Wk= x(m) wal (m,k) , k= 0, 1, 2, ... , N-1

m=0

The N-tuple formed by Walsh coefficients in ascending order of the

index k is called the sequency ordered discrete Walsh transform;

i.e., x = W1 ' ... , WN - 1 . Using the property that the discrete

Walsh function is symmetric with respect to its arguments; i.e.,

wal (k,m) = wal (m,k) , we can write the inverse Walsh transform as

N-1

x(k) = - f(m) wal (k,m) , k= 0, 1, 2, ... , N-1x~)-N E

m=0

where x(k) is the kt h  element of x . It is thus shown that the

forward transform and the inverse transform have exactly the same

operations. The Walsh transforms are implemented through the fast

Walsh transform (FWVT) algorithms.

Typically, FWT schemes exploit the structure of the FFT except

that the role of 2%

N
W = e

N

in the FFT [9] is replaced by -1 in the FWT. This makes FWT so

much faster than the FFT. The FWT algorithm requires only addition
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and subtraction. Notable algorithm for the computation of FWT has been

described in [L10].

There are some important differences between signals represented

in the Walsh domain and those in the Fourier domain. First of all,

the digital signal N-vector x is represented exactly by the first

N Walsh functions. This means that sampled data of finite duration is

also sequency limited. This is, of course, not true in the frequency-

domain representation where a time-limited signal is not band limited.

One can obtain finite segments of a signal x(t) by multiplying

the signal by a "window function" w(t); that is, x (t) = x(t) w(t)

where

1l, 0 t T

w(t) =

0, t > T

x(t) x(t), 0 t T

x Mt =
P 0, t > T

Now, let the Fourier transform of x(t) be X(f); i.e.,

F[x(t)] = X(f), then F[x(t) * w(t)] = X(f) * W(f)

where

sin af
W(f) = K af

af

and K and a are constants; and * denotes convolution. This result

shows that the Fourier transform is distorted through the convolution

with the frequency-domain window function. It is well known that the

error may be minimized by applying a corrective weighting function

such as Hamming window. This extra processing is used solely to correct

the distortion effects of the data windows. Such distortion does not
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occur in the Walsh domain because the window function is one of the basis

functions; namely, w(t) = wal (0,t) . This is easily seen by the

following reasoning: Taking the same data window w(t), we obtain for the

finite segment of the signal x(t) as

CO

x(t) • w(t) = Wk wal (k,t) • wal (O,t)

k=O

Since the complete set of Walsh functions is closed in multiplication

and wal(k,t) * wal (m,t) = wal (kG m,t) where G denotes module 2

addition with no carry; i.e.,

1 O= 1

i 1= 0

0 O= 0 ,

wal (k,t) wal (0,t) = wal (k,t) and hence x(t) w(t) = W. wal (kt).
k

It is clear that the window function w(t) introduces no distortion at

all in the Walsh domain.

In summary, the Walsh-domain representation has two distinct

advantages over the Fourier-domain representation for discrete signals

in addition to its computational speed. First, the data is exactly

represented by a finite set of Walsh functions, anrid secondly, no

distortion is introduced by the finite window function. Therefore, no

correction such as the use of Hamiming or Hanning window is necessary.

We shall now turn our discussion to some properties of Walsh functions

which we may utilize to our advantage. Let us consider a signal f t)

which is periodic with period 2T and a signal f2(t) which is the

same as fl(t) except that it has period T as shown in Figure 9.

In other words, f2(t) is a time-compressed version of fl(t); i.e.,

17



f 2(t) = f 1(2t) , t 0 .

fl(t)

1

2T t

f (t)
2

T 2T t

Figure 9 Time compression of a periodic signal

Representing the signals fl(t) and f 2(t) in the Walsh domain, we

obtain

fl(t) = Wk wal (k,t)

k=0

and
CO

ft M 1 wal (k,t)

k=0

The time compression condition f 2(t) = f 1(2t) implies that

W wal (k,t) = Wk wal (k,2t)

k=O0 k=0

18



From the definition of the Walsh functions, we have wal (k,2t) =

wal (2k,t) ; hence,

Wk wal (k,t) = W wal (2k,t)

k=0 k=0

Therefore,

1
W = W

0 0

1
W = 01

W I = WI

2 1

1
W = 0
3

W 1 =W
4 2

1
Wk k/2 , k even

1W - n 1 odd
k

For further compression in time such as f 2(t) = f 1(mt), where

m = 2 , = 1, 2, ... , we obtain

Wk/, -- is an integer

W1
k

0 , otherwise

In essence, it says that compressing time by a power of 2 leaves the

Walsh spectrum completely unaffected except for intervening zeros.

This property may be used effectively for the detection of subharmonics

in a signal. For example, we show the spectrum of a signal which has

period T = 1.024 seconds in Figures 10 and 11. Figure 10 shows the

spectrum without subperiods and Figure 11 shows that with 8 subperiods.

Notice there are 8 intervening zeros in Figure 11.

19
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The convergence property of the Walsh representation compares very

favorably with the Fourier representation. To demonstrate, we computed

the percentage loss in theosignal energy (or the normalized mean squared

error) of a section of EEG about 1 second in length for both the Fourier

and Walsh transforms. The results are plotted in Figure 12. It is

clear that the Walsh transform has a better convergence property than

the Fourier transform in the lower range. In other words, in the range

between 0 to 40 terms the Walsh transform requires fewer number of terms

to achieve the same amount of mean-squared error as that required by

the Fourier transform. Figure 13 shows a typical Walsh and Fourier

spectra of a record of EEG signals. Some preliminary results have shown

that the Walsh transform does enhance certain features of EEG signals.

Further work is in progress for utilizing these features for EEG

classification purposes.
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IV. .A Digital Phase-Distortionless Filter Operating in the Frequency

Domain

In phase uncertainty model for the EEG signals to extract the

parameter b as a measurement of alertness, it is critical to filter

the EEG signal by a phase-distortionless filter. Such a filter operating

in the time domain was used in previous studies. Since this filtering

requires that the EEG signal convolves with the finite duration impulse

response of the filter, it is extremely slow. This, of course, prohibits

real-time usage. A phase-distortionless filter must have linear-phase

characteristics in the frequency domain. In order for a ditial filter

to possess linear phase characteristics, the impulse response of its

system function must satisfy the condition

h(n) = h(N - 1 - n)

This requirement is easily met in digital filtering. It results in a

linear phase shift which corresponds to a delay of (N-1)/2 sample

points. The input data x(n) is first partitioned into data segments

xk(n) of length M ; i.e.,

xk(n = fx(n) , kM : n ! (k+l)M-.1

k , otherwise

Hence, x(n) is simply the sum of the x (n) 's ork

x(n) = xk(n)

and the filtered output y(n) is the result of convolution of the two

sequences; i.e.,

y(n) = x(n) * h(n) = xk(n) * h(n)

k= 25

25



Each of the terms in the convolution sum is of length (N+M-1)

where

N = filter length

M = data length

For each output point, there are numerous multiplications and additions.

The astronomical number of such operations renders this scheme extremely

slow. In order to speed up the process, other means must be found.

We decided to use the frequency-domain approach. From the above discussion,

we found that to effect the convolution in the frequency domain, the

transforms must be computed on a basis of at least (N+M-1) points.

The (N-1) and (M-l) locations subsequent to the Nt h filter coefficient and

th
the M data point, are respectively filled with zeros before each

transform is taken. Since the FFT results in a circular convolution

of the two sequences, the desired output sequence is obtained by reconstructing

the filtered sections in such a way that convolution is achieved. The

filtered sections are simply the results of inverse transform of the

sequence obtained by multiplying the transformed data sequence, term

by term, with the transformed filter coefficient sequence. The procedure

for reconstructing the filtered sections is referred to as the overlap-

add method. This complete operation involves FFT and multiplications

in one scope for obtaining the whole section of the filtered results$ whereas

the time-domain operation requires multiplications and additions for

each ouput.point.

Moreover, additional savings in time could be achieved by this frequency-

domain operated filtering procedure if both of the signal and filter

sequences are real. In general, the filtered sections yk(n) are

26



complex; i.e.,

Yk(n) = Re [Yk(n) + jIm [Y (n)]

= Re [xk(n)3 * Re[h(n] - Im xk(n1 * Im[h(n)

+ i Im[xk(n) * Re [h(n)J + Re[xk(n * Im[h(n)]

Our filter is real; hence,

Im h(n) = 0

and y k(n) becomes

Yk(n)= ReLxk(n)1 * Re h(n)1 + j Im xk(n)* Re[h(n1

If the data sequence is also real, two separate convolutions with the

same kernel sequence can be performed simultaneously. Therefore, when

convolving real signals with real impulse responses, the FFT is capable

of double performance. This is achieved by loading the data in both

the real and imaginary parts of the data sequence to be transformed

and processed with the same impulse response of the filter. Thus,

we are able to save additional time in the filtering process. The

double-performance overlap-add method is depicted in Figure 14 in which

section a is discarded, as it constitutes the inherent delay. The

subsequent sections in Figure 14 are dealt with in the following manner:

Unprimed and primed sections are added together term by term and the

continuous filtered output is obtained by stringing together the

resultant sections.

A few words about the judicious choice of the data length M and

the filter impulse response length N are in order. There are two

major considerations: (a) N must be sufficiently large so that the

ratio of the Hamming weighted impulse response side-lobe width to the

27
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Figure 14 Double-performance overlap-add method

main-lobe width is sufficiently small in order to achieve a sharp

cutoff in the frequency response characteristic; (b) The overlap-add

procedure described previously will be more efficient computationally

iwhen N = M -+ 1 and N + M - 1 = 2 , where i is an integer. In

our application, we chose N = 4097 and M = 4096 . This choice does

satisfy the above considerations. The frequency-domain operated phase

distortionless digital filter which we have designed and used has

a passband of 8 to 13 Hz. Its amplitude response characteristic is

shown in Figure 15. Notice the sharp cutoff feature of this filter.

We show the 'flowchart of this filter in Figure 16, and the resultant

filtered output of a section of EEG signal by the use of frequency-
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domain filtering in Figure 18. From these figures we observe that the

resultant outputs are identical.

From previous discussion, we may conclude that the phase-distortionless

filtering in the frequency domain is versatile and faster than the time-

domain filtering. The use of FFT permits the filtering to be accomplished

on real-time basis; whereas the time-domain filtering for the same

length of data will take at least fifty times longer to accomplish.

In other words, the frequency-domain filtering needs only 1/50 of the

time needed for the time-domain filtering. Besides, the FFT is also

capable of double performance discussed previously. We may use this

double-duty feature to filter simultaneously either two independent

channels of EEG signals or one channel of EEG signals in two different

bands of interest.
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V. Conclusion

The work has been progressing along the lines as proposed. Our

preliminary results presented in this report show great promise. The

tests for stationarity in EEG signals are designed for the determination

of the length of signal interval in which spectral analysis is valid and

have great potential in extracting the dynamic characteristics of the

signal process. This will, undoubtedly, help in the detection of

changing states of alertness. In the area of searching for new represen-

tation, we described the use of Walsh transform and showed its advantages.

In the modeling of EEG signals, we described,in detail the phase-

distortionless digital filter in the frequency domain. Its versatility

and speed have been proven from our results. This filter can be operated

in real time in contrast to the time-domain filtering techniqued used
previously which is fifty times slower. Without question, this filtering

technique will speed up the estimate of the parameter b in the model

for alertness measure.
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